Optimization of Titanium Alloy-Ti-6Al-4V to Minimize Mass, Maximize Stiffness and Frequency in Additive Manufacturing

Title: Optimization of Titanium Alloy-Ti-6Al-4V to Minimize Mass, Maximize Stiffness and Frequency in Additive Manufacturing

Authors

Dame Alemayehu Efa, Endalkachew Mosisa Gutema*, Hirpa G. Lemu, Mahesh Gopal

Abstract:

Manufacture of intricate components, products without the need for tooling, shorter lead times and material grading are the most beneficial applications of Additive Manufacturing (AM). The goal of this study is to develop a design optimization framework for developing an aircraft component using additive manufacturing utilizing topology and lattice optimization techniques. Solid works were used to create a 3D model of an aircraft bracket made of Titanium alloy. To minimize mass and maximize frequency and stiffness, the optimization was performed using Altair Inspire 2022.1 software. Component optimization was performed using the finite element method, which entails reducing material while maintaining the proper function of the modelled component. The optimal performance of the designed aerospace component using topology with lattice infill is achieved with minimization of mass from 2.24810 kg to 0.16235 kg and the volume from 5.07579×105 mm3 to 4.70922×102 mm3, frequency is increased from 0.02 kHz to 13.9537 kHz, stiffness is maximized from 1,485,884.1 N/m to 4,558,924.0939 N/m with a factor of safety of 1.73. Therefore, the mechanical properties of the optimized model can full fill its overall performance.

DOI: https://doi.org/10.4028/p-sO6M4z

Read full article here