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Abstract: Aluminum alloy is the second most abundant metal on Earth, known for its wide range of

utilization in commercial goods due to its heat capacity and tensile strength. This study examines

the effect of nose radius on the turning process. Further, it explores the implications of cutting

parameters such as the cutting speed, the rate of feed, the cutting depth, and the nose radius of the

tool. The trials were carried out with an Al 6061 workpiece and an Al2O3-coated carbide tool as

the cutter, utilizing the response surface methodology. A mathematical model was developed to

investigate the performance characteristics of the turning operation using the analysis of variance

method. The multi-response desirability function analysis combines individual desirability values

to create a composite desirability value. The ideal parameter levels were determined using the

composite desirability value, and the significant influence of parameters was assessed. The obtained

optimum surface roughness and temperature parameters are at a cutting speed of 116.37 m/min, a

rate of feed of 0.408 mm/rev, a cutting depth of 0.538 mm, and a tool nose radius of 0.20 mm. The

related ideal surface roughness and temperature values are 0.374 µm and 27.439 ◦C. The optimal

overall desirability value is 0.829, close to the target response.

Keywords: cutting speed; aluminum 6061; response surface methodology; rate of feed; ANOVA;

cutting depth; desirability function; tool nose radius

1. Introduction

The ability to produce lightweight materials has created the path for the automotive
and aerospace industries to reduce, for instance, the overall weight of vehicles [1]. To
achieve this weight reduction, aluminum materials are used in various engineering fields to
replace iron and steel, due to their superior mechanical properties including a high stiffness-
to-weight ratio, physical and thermal qualities, corrosion resistance, and recyclability [2].
Aluminum and its alloys, on the other hand, have poor machinability. As a result, extensive
research into studying performance attributes and efficient machining technologies are
underway to lower the total costs.

To assess flank wear of the cutting tool in machining [3], experiments were conducted
to investigate the cutting performance of aluminum alloy LM 25, which was reinforced
with green-bonded silicon carbide. The study employed the response surface methodology
(RSM) and desirability function analysis (DFA) to improve the surface roughness. A drilling
process in aluminum-silicon carbide was performed [4] using the analysis of variance
(ANOVA) and Taguchi methodologies to increase material removal rate (MRR) and to
decrease surface roughness, where the RSM was employed to assess the tool’s surface
waviness, thrust force, burr height, and wear. Rajmohan and Palanikumar [5] used Al 356
aluminum bonded with silicon carbide composition in the drilling experiment. In the study
reported in [6], the composite desirability (CD) value of numerous performance attributes,
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such as surface quality and cutting force, was transformed into a single performance feature.
Taguchi and DFA were used to optimize the parameters of aluminum-silicon carbide. The
research work in [7] reported that the RSM and DFA enhanced the machining settings to
maximize tool life and minimize energy usage during the Al 7075 alloy machining. The
study used ANOVA to investigate the aluminum alloy, while the RSM was utilized to
develop the mathematical model. The cutting speed was the most critical parameter that
influenced the experiment compared to other parameters; further, sensitivity analysis was
carried out to study the cutting force [8]. Mugendiran et al. [9] improved an aluminum
alloy’s surface quality and wall thickness using the RSM and ANOVA. The RSM and
the genetic algorithm were employed for the experimentation to optimize the aluminum
sample. The input parameters considered were rotation speed, the rate of feed, the axial
cutting and radial cutting depth, and tool rake angle [10]. Furthermore, the author in [11]
optimized surface quality using the RSM and DFA of aluminum alloys. The RSM and
DFA were also used to maximize aluminum alloy energy utilization, surface waviness, and
material removal rate (MRR) by taking the cutting depth, the rate of feed, and the cutting
speed into account [1,12,13].

The RSM is frequently used in conjunction with desirability functions to forecast more
optimum results [14–17]. The research reported in [18] constructed an empirical model to
anticipate overcut in machining using the Box Behnken design and compared the empirical
model with the RSM model. The model corresponds well with the experimental data, and
the model was compared with the RSM. DFA is a prominent method used in industry
and academia to optimize several responses [19]. The author in [20] introduced the RSM
and DFA as an optimizing tool to select the best option in turning replies into desirability
indices ranging from 0 to 1. The response of predetermined maximum or minimum values
was identified with process parameters inside a given range. The response was then
transformed into the desired value via one-sided transformation in the desirability-based
method. A numerical optimization method and desirability analysis were used to optimize
the wear rate [21]. The author [22] employed the Taguchi method to investigate and
determine the influencing variables using ANOVA. DFA was used as the performance
index of the output by computing the composite DFA values. The research reported
in [23] carried out three optimizations: (1) quality optimization, (2) economic optimization
and (3) combined optimization, using ANOVA, the RSM, and DFA to minimize surface
unevenness and wear in the tool. The desirability function combined with the Taguchi
approach allows optimization of the multi-response concerns such as surface irregularity
and MRR [24], optimization of the coating breadth, thickness, and interface temperature [25]
and optimizing machining pressure and surface roughness [26]. An experimental study
was conducted by [27] to optimize the microhardness and surface quality of IN625 material
using Taguchi L9 optimization and Super Ranking techniques. The input parameters were
laser power, scan speed, and hatch distance. The authors in [28] used the ANOVA, the RSM,
fuzzy MCDM, fuzzy AHP, and fuzzy TOPSIS to optimize titanium (Ti6Al4V) alloy using
a electrical wire discharge machining process to optimize the cutting speed, MRR, and
surface roughness. The result emphasizes that the RSM is an effective tool for the design
of experiments. The author [29] experimented by considering layer thickness, building
orientation, raster angle, raster width, and air gap as input parameters and the output
parameter as impact strength, flexural strength and tensile strength during processing
by using fused-filament fabrication methodology in AM technology. The naked mole-rat
algorithm (NMRA) was applied to solve the optimization process. The ball end milling
operation was performed by [30] using hardened 55NiCrMoV6 steel material considering
the cutting speed and surface inclination angle as input parameter to optimize the cutting
force by using the RSM. The results indicated that the surface inclination angle has a
significant influencing parameter compared to others. Aluminum 6061 is a precipitation-
hardened alloy with excellent properties such as high ultimate tensile strength and yield
strength that are desirable for many applications. It also contains significant elements
of magnesium and silicon. Therefore, careful consideration should be taken during the
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machining process. The literature indicates that the desirability function technique is
a proper method to enhance the multi-response optimization processes, such as those
experienced in machining aluminum and its alloys [31,32].

Utilizing ANOVA and RSM, a lot of research have been reported on aluminum 6061
as the workpiece material. However, the application of ANOVA, the RSM, and DFA to
optimize the input and output parameters during the turning of aluminum 6061 is not well
documented in the literature. DFA application, in particular, has significant benefits to
optimize and reduce several criteria simultaneously and to bring out the process changes
that lead to better product quality and higher productivity.

In this study, experiments were conducted using the design of experiment (DoE)
strategy and optimized using the RSM. The DoE is necessary to study the relationship
between the multiple input and output variables and gain knowledge to estimate the
best-operating conditions. Furthermore, the DoE was used to determine the individual
and interactive effects of variables influencing the output result during measurements.
In addition, DFA was used to convert the multiple response characteristics into single
response characteristics and calculate the ideal machining environment of the process
parameters to reduce surface roughness and temperature.

2. Methods, Materials and Process Parameters

2.1. Materials and Experimentation Setup

In this experiment, untreated aluminum 6061 with a diameter of 50 mm and a length
of 100 mm was used as the working material. Table 1 shows the chemical properties of
aluminum 6161 material.

Table 1. Chemical properties of aluminum 6061.

Al 6061 Mg Si Fe Mn Cu Cr Zn Ti Al

Weight
(%)

0.8–
1.2

0.40–
0.80

0.0–0.70 0.15
0.15–
0.40

0.04–
0.35

0.0–0.25 0.0–0.15 Bal

The trials were performed in dry conditions on an XLTURN-CNC lathe (MTAB, Tamil-
nadu, India), Figure 1a, with an Al2O3-coated carbide tool by using a Sandvik Coromant
T-Max P Turning Tool Holder (Sandviken, Sweden). The machining parameters considered
were the cutting speed, the rate of feed, the cutting depth, and the nose radius of the tool.
A 1 mm hole was bored into the aluminum material, and the sample was positioned 10 mm
beneath the cutting surface. As illustrated in Figure 1b, a K-type thermocouple (Shanghai
MKYD Instrument, Shanghai, China) was used to detect the temperature, and a SURFTEST
SJ-201 surface roughness tester (Mitutoyo America Corporation, Aurora, IL, USA) was
used to assess the roughness of the surface.
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Figure 1. Experimental setup.

2.2. Process Parameter Identification for Experiment

For the experimental investigation, the following process factors have an impact
on surface roughness and temperature were identified as per the recommendations of
machining conditions and input parameters in [33]. The output responses were formulated
as follows.

- Minimization of the surface roughness (Ra in µm); the cutting factor equation is:

Minimize: Ra = c (Vc
k

1 Fz
k

2 Dc
k

3 Rn
k

4) (1)

- Minimization of the temperature (Temp, ◦C) using the cutting parameters

Minimize: Temp = c (Vc
k

1 Fz
k

2 Dc
k

3 Rn
k

4) (2)

where k1, k2, k3, and k4 are the model parameters (estimated from experimental data) and
c is the response error.

2.3. The Creation of a Design Matrix and the Selection of Parameter Levels

The DoE was used in the creation of a design matrix, selection of parameter levels
and the experiments, while the operating limits of all evaluation criteria were used to
determine the levels of parameters. As the DoE is a systematic approach used to solve
engineering problems, its application reduces the number of experiments and gives a high
level of control. The operating ranges of all parameters were determined through trial
runs, with one parameter modified while the others remained fixed. Trial runs before
the stated parameters were used to identify the upper-bound (+2) and lower-bound (2)
levels of all five independent variables, resulting in the precise predicted values shown in
Tables 2 and 3. The intermediate levels of all variables, 1, 0, and +1, were calculated via
interpolation [34]. The design matrix chosen to conduct the experiments using the DoE
method was a four-factor central composite rotatable design (CCD) consisting of 30 sets of
coded conditions and a full replication, where 24 are non-center points and 6 are center
points.
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Table 2. The factorial levels of output process parameters.

Sl. No Parameters
Factorial Levels

−2 −1 0 1 2

1 Cutting speed, Vc (m/min) 75.0 90.0 105.0 120.0 135.0
2 Rate of feed, Fz (mm/rev) 0.09 0.18 0.27 0.36 0.45
3 Cutting depth, Dc (mm) 0.20 0.40 0.60 0.80 1.00
4 Tool nose radius, Rn (mm) 0.20 0.40 0.60 0.80 1.00

Table 3. Responses to experimental values.

Sl.
No

Cut.
Speed
(Vc)

Rate of
Feed
(Fz)

Cut. Depth
(Dc)

Tool Nose
Radius

(Rn)

Rough.
(µmob)

(Practical)

Rough. (µm

RSM)
(Pred Using

RSM)

Temp.
(◦Cob)

Tob
(Practical)

Temp.
(◦CRSM)

(Pred Using
RSM)

1 120 0.36 0.8 0.4 0.38 0.3721 28.8 28.77
2 90 0.18 0.8 0.4 0.44 0.4471 29.8 29.84
3 105 0.27 1.0 0.6 0.41 0.4117 26.6 26.55
4 105 0.27 0.6 0.6 0.39 0.3983 25.8 25.77
5 90 0.36 0.8 0.8 0.46 0.4588 24.9 24.76
6 105 0.27 0.6 0.2 0.41 0.4100 26.9 26.80
7 120 0.36 0.8 0.8 0.37 0.3779 29.9 30.10
8 105 0.27 0.6 0.6 0.39 0.3983 26.2 25.77
9 75 0.27 0.6 0.6 0.49 0.4867 29.5 29.58

10 90 0.18 0.4 0.4 0.43 0.4263 26.8 26.71
11 90 0.36 0.8 0.4 0.45 0.4479 28.6 28.61
12 105 0.27 0.6 0.6 0.42 0.3983 25.6 25.77
13 105 0.27 0.2 0.6 0.39 0.3850 29.6 29.66
14 120 0.18 0.8 0.8 0.40 0.3971 29.8 29.73
15 120 0.18 0.4 0.4 0.39 0.3904 30.1 30.12
16 105 0.27 0.6 0.6 0.39 0.3983 25.6 25.77
17 90 0.36 0.4 0.8 0.45 0.4529 27.8 27.88
18 90 0.36 0.4 0.4 0.44 0.4421 27.2 27.16
19 105 0.27 0.6 1.0 0.41 0.4067 27.1 27.11
20 120 0.18 0.4 0.8 0.37 0.3763 34.2 34.30
21 90 0.18 0.4 0.8 0.41 0.4171 25.8 25.71
22 105 0.45 0.6 0.6 0.41 0.4117 27.6 27.61
23 105 0.09 0.6 0.6 0.42 0.4150 26.8 26.80
24 120 0.36 0.4 0.4 0.36 0.3663 30.4 30.45
25 105 0.27 0.6 0.6 0.39 0.3983 25.8 25.77
26 120 0.18 0.8 0.4 0.41 0.4112 30.1 30.13
27 135 0.27 0.6 0.6 0.37 0.3700 38.4 38.33
28 90 0.18 0.8 0.8 0.44 0.4379 24.2 24.26
29 120 0.36 0.4 0.8 0.38 0.3721 36.5 36.34
30 105 0.27 0.6 0.6 0.41 0.3983 25.6 25.77

2.4. Surface Roughness Prediction Using a Response Surface Model

The experimental results were examined methodically using the Design-Expert soft-
ware V11 (StatEase, Minneapolis, MN, USA). A second-order quadratic model is developed
to predict surface roughness. As reported in [35], ANOVA has been used to determine the
model’s suitability. The ANOVA table for Ra prediction is shown in Table 4.
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Table 4. Surface roughness—ANOVA table.

Source
Sum of
Squares

Value
df

Mean
Square
Value

F-Value p-Value

Model 0.0256 14 0.0018 19.96 <0.0001 Significant
Vc 0.0219 1 0.0219 239.28 <0.0001
Fz 0.0000 1 0.0000 0.1745 0.6820
Dc 0.0010 1 0.0010 11.17 0.0045
Rn 9.000 × 10−6 1 9.000 × 10−6 0.0982 0.7583

Vc Fz 0.0016 1 0.0016 17.45 0.0008
Vc Dc 0.0000 1 0.0000 0.0000 1.0000
Vc Rn 0.0000 1 0.0000 0.2727 0.6091
Fz Dc 0.0002 1 0.0002 2.45 0.1380
Fz Rn 0.0004 1 0.0004 4.36 0.0542
Dc Rn 0.0000 1 0.0000 0.0000 1.0000

Vc
2 0.0015 1 0.0015 16.83 0.0009

Fz
2 0.0004 1 0.0004 4.21 0.0581

Dc
2 0.0000 1 0.0000 0.0000 1.0000

Rn
2 0.0002 1 0.0002 1.87 0.1916

Residual 0.0014 15 0.0001
Lack of Fit 0.0005 10 0.0000 0.2783 0.9596 Not Significant
Pure Error 0.0009 5 0.0002
Cor Total 0.0270 29

The F-value of 19.96 suggests that the model is significant, where this large F-value
might occur due to noise of 0.01% of the time. p-values less than 0.0500 indicate that the
model terms, i.e., the model terms Vc, Dc, Vc, Fz, and Vc

2 are significant. On the other
hand, values over 0.1000 suggest that the model terms are not significant. Model reduction
may help for a model with many insignificant terms (except those necessary to enable
hierarchy).

The F-value of 0.2783 for the lack of fit suggests that it is minimal compared to the
pure error. A substantial lack of fit F-value may occur 95.96% of the time due to noise, and
a non-significant lack of fit is preferred. The following Design-Expert software’s (StatEase,
Minneapolis, MN, USA) regression equation of the objective factors was obtained upon
running the regression.

Ra = +0.786250 − 0.006694 × Vc + 0.476852 × Fz + 0.089583 × Dc − 0.110417 × Rn

− 0.007407 × Vc × Fz − 3.69886 × 10−17× Vc × Dc − 0.000417 × Vc × Rn v

0.208333 × Fz Dc + 0.277778 × Fz × Rn − 1.50104 × 10−15 × Dc Rn + 0.000033Vc
2 +

0.462963 × Fz
2 − 7.93479 × 10−16 Dc

2 + 0.062500 × Rn
2

(3)

2.5. Temperature Prediction Using a Response Surface Model

A second-order quadratic model was developed to predict temperature. ANOVA
analysis was used to determine the model’s fitness. The ANOVA table for the temperature
prediction is shown in Table 5.
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Table 5. ANOVA table of temperature.

Source
Sum of
Squares

Value
df

Mean
Square
Value

F-Value p-Value

Model 311.21 14 22.23 786.09 <0.0001 Significant
Vc 49.56 1 49.56 1752.53 <0.0001
Fz 1.01 1 1.01 35.72 <0.0001
Dc 9.70 1 9.70 343.14 <0.0001
Rn 0.4290 1 0.4290 15.17 0.0014

Vc Fz 0.0156 1 0.0156 0.5526 0.4688
Vc Dc 9.77 1 9.77 345.35 <0.0001
Vc Rn 26.78 1 26.78 947.06 <0.0001
Fz Dc 2.81 1 2.81 99.22 <0.0001
Fz Rn 2.98 1 2.98 105.23 <0.0001
Dc Rn 20.93 1 20.93 740.18 <0.0001

Vc
2 114.92 1 114.92 4063.88 <0.0001

Fz
2 3.54 1 3.54 125.27 <0.0001

Dc
2 9.37 1 9.37 331.24 <0.0001

Rn
2 2.42 1 2.42 85.49 <0.0001

Residual 0.4242 15 0.0283
Lack of Fit 0.1508 10 0.0151 0.2759 0.9606 not significant
Pure Error 0.2733 5 0.0547
Cor Total 311.63 29

The F-value of 786.09 for the model indicates that it is significant. An F-value this large
may be attributable to noise merely 0.01 percent of the time. Significant model terms have
p-values less than 0.0500. The following model terms are significant: Vc, Fz, Dc, Rn, Vc Dc,
Vc Rn, Fz Dc, Fz Rn, Dc Rn, Vc

2, Fz
2, Dc

2, and Rn
2. Values greater than 0.1000 indicate that

the model terms are insignificant.
As can be observed from the table, the F-value for lack of fit is 0.2783, which indicates

that the lack of fit is negligible compared to the pure error. A significant lack of fit F-value
due to noise has a 96.06% chance of occurring, but a non-significant lack of fit was preferred.
The regression equation for the Design-Expert software (StatEase, Minneapolis, MN, USA)
in terms of actual variables is provided below.

Temp = +123.32917 − 1.86083 × Vc − 19.67593 × Fz + 29.35417 × Dc − 43.10417
× Rn − 0.023148 × Vc × Fz − 0.260417 × Vc × Dc + 0.431250 × Vc × Rn − 23.26389

× Fz × Dc + 23.95833 × Fz × Rn − 28.59375 × Dc × Rn + 0.009097 × Vc
2 + 44.36728

× Fz
2 + 14.60937 × Dc

2 + 7.42187 × Rn
2

(4)

3. Discussion of Results

3.1. Interaction Effect of Surface Roughness

Figure 2a depicts the interaction plot between the cutting speed (Vc) and the rate of
feed (Fz) in terms of surface roughness (µm). The cutting speed increases consistently, the
surface waviness decreases, and the rate of feed increases; the surface roughness increases
correspondingly. The cutting speed is between 90 and 105 m/min, the surface waviness
value is low, and the rate of feed is low, at 0.09 mm/rev. The result shows that the surface
waviness is negligible at a medium cutting speed and a low rate of feed. On the other hand,
changes in the feed rate significantly impact both low and high cutting speeds. The cutting
speed and the rate of feed determine surface finish and MRR. The ANOVA was also used
to validate the result (Table 4).
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(a) (b) 

  
(c) (d) 

Figure 2. Interaction effect in terms of surface roughness of (a) Vc vs. Fz, (b) Vc vs. Dc, (c) Vc vs.

Rn and (d) plot of actual vs. predicted values. Plots produced using Design-Expert software V11

(StatEase, Minneapolis, MN, USA).

The interaction impact of the cutting speed and the cutting depth on surface roughness
is shown in Figure 2b. The cutting depth is low at a higher cutting speed substantially
impacts surface roughness. The cutting depth is a critical cutting parameter that influences
the whole process, including stability, cutting forces, vibrations, and spindle load. The
surface roughness is lower at a higher cutting speed and a lower depth of cut. The effect of
the cutting speed and tool nose radius on surface roughness is shown in Figure 2c. Lower
cutting speeds result in higher surface roughness, while lower tool nose radius results
in significantly lower surface roughness. The surface roughness significantly increases
between the tool nose radius of 0.2 mm and 0.4 mm. At all cutting speeds, the same pattern
emerges. The results revealed that the industry deserves a suitable surface roughness; the
nose radius should be 0.8 mm and 1 mm.

Figure 2d depicts a graph of observed values vs. predicted values, and it assists in
identifying the observations. The 45◦ line evenly divides the data points.

3.2. Interaction Effect of Temperature

The temperature interaction plot between the cutting speed and the rate of feed is
depicted in Figure 3a using the interaction effect. When the cutting speed is between 90
and 105 m/min, the temperature is relatively low, and it is also inadequate when the rate of
feed is 0.27 to 0.36 mm/rev. At a medium cutting speed and rate of feed, the temperature is
low. The ANOVA may also be used to validate the result (Table 5).
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(a) (b) 

  
(c) (d) 

Figure 3. Interaction effect of temperature (a) Vc vs. Fz, (b) Vc vs. Dc, (c) Vc vs. Rn and (d) actual vs.

predicted plot. Plots produced using Design-Expert software V11 (StatEase, Minneapolis, MN, USA).

Figure 3b shows the effect of temperature on the cutting speed and the cutting depth.
A smaller cutting depth significantly influences the temperature reduction. The cutting
force increases when there is an increase in the cutting depth and the rate of feed, reducing
with an increasing cutting speed.

Figure 3c demonstrates the effect of temperature interaction on the cutting speed and
tool nose radius. The temperature rises dramatically with increasing the cutting speed
and falls significantly with increasing tool nose radius, with the temperature decreasing
noticeably between 0.6 and 1 mm.

The result indicates that to maintain a low temperature in the work piece, the nose
radius should be between 0.8 and 1 mm. Figure 3d depicts a graph of observed vs. predicted
values, which aids in detecting observations that the model fails to predict. The 45◦ line
should split the data points evenly.

3.3. Desirability Function Approach

Researchers have employed various optimization approaches to increase product
quality and productivity [7,31,32]. The studies indicate that a desirability function analysis
improves the process parameters. The following procedures were used to optimize the
input parameters using DFA and the RSM.
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The work reported in [20] suggested the individual desirability index (di) for the
comparable responses, where two desirability functions were considered based on the
response characteristics, namely (a) the smaller, the better and (b) the larger, the better.
The experiment was carried out to determine the features of electro-discharge machining
(EDM) using an optimization-based desirability technique [36]. The experiment analysis
was performed on hardened 55NiCrMoV6 steel to minimize cutting force and vibration.
The signal-to-noise ratio (S/N) and grey relational analysis optimization techniques were
performed, considering surface inclination angle and tool overhang as input parameters.
According to the optimization results, changes in tool overhang increase the cutting force
and vibration [37].

(a) The smaller the better: This method aims to reduce the output variable to the
smallest possible value; hence, the smaller, the better characteristic is utilized to establish
distinct desirability levels. To normalize their values and evaluate individual desirability
indexes, the smaller, the better desirability function is utilized within the range of [0, 1].
When the response must be lowered, according to Harrington [38], Equation (5) defines the
smaller, the better sort of quality characteristic.

The desirability functions di can be expressed as.

di =

{

1
0

(

ym − ymax

ytgt − ymax

)r

(5)

where ym is minimized and

ym < ytar, ytar < ym < ymax, r ≥ 0, and ym < ymax

In this case, ytar is the response’s lowest value ym, i.e., ytar = ymin.
Equation (5) can be modified as follows (Equation (6)).

di=

{

1
0

(

ym − ymax

ymin − ymax

)r

(6)

where ym < ymin, ymin < ym< ymax, r ≥ 0 and ym < ymax
The condition is most attractive when ym is smaller than ymin and the individual

desire score is 1. When ym deviates from ymin, the value of di declines until it approaches
“0” when yi exceeds ymax. In all other cases, the di values produced are in the range [0,
1]. The exponent w represents the weights allocated to each response depending on their
relevance. Equation (7) computes the composite desirability as the geometric mean of each
experimental circumstance’s desires.

(b) Composite Desirability (CD):
The composite desirability is expressed as:

CD =

(

DW1
1 × DW2

2 × DW3
3 × . . . . . . . . .

)1/N

(7)

where N is the number of responses, D1, D2, and D3 are individual desirability indexes,
and W1, W2, and W3 and weight assigned responses, where w = ∑

N
i Wi = 1.

If any of the replies is entirely unacceptable, the value of CD becomes zero, i.e., Di = 0.
(c) Choosing the optimum parameter combination and level: A developed compos-

ite desirability value suggests that the product is of quality. As a result, the composite
desirability is used to evaluate the parameter result and ideal level for each manageable
parameter.

3.3.1. Desirability Function Approach for Surface Roughness

The desirability functions presented in Equation (6) are used to calculate the individual
desirability of surface unevenness. The minimum surface unevenness value is 0.32 µm, and
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the maximum value is 0.49 µm. Surface roughness increase is given equal the weightage
(w1 = w2 = 1).

dtemp=

{

1
0

(

ym − 0.49

0.32 − 0.49

)1

(8)

where ym < 0.32, 0.32 < ym < 0.49, r ≥ 0 and ym < 0.49.
Equation (9) was employed to compute the surface roughness based on the responses

under consideration.

CD =

(

Di
µm

)1/2

where i = 1 to 30 (9)

3.3.2. Desirability Function Approach for Temperature

Individual desirability of temperature is calculated using the desirability functions as
given in Equation (6). Surface roughness increases by giving equal weightage (w1 = w2 =
1), the minimum temperature value is 24.2◦, and the maximum temperature value is 38.8◦.

dtemp=

{

1
0

(

ym − 38.8

24.2 − 38.8

)1

(10)

where ym < 24.2, 24.2 < ym < 38.8, r ≥ 0 and ym < 38.8.
Equation (9) computes the surface roughness based on the responses under considera-

tion.

CD =

(

D1
temp

)1/2

where i = 1 to 30 (11)

3.3.3. Process Parameter Multi-Response Optimization for Lowest Surface Imperfection
and Temperature

Świercz et al. [39] used a multi-response optimization (MRO) technique for DFA. The
optimization process was used, and the use of a statistical alternative to specifying the test
to be performed earlier. Nowadays, the desirability function is extensively used to reduce
multi-response situations into a single response [40]. The author [41] used the RSM and
DFA to optimize the results. The highest overall desirability factor settings are found under
the optimal parameter situations. The simultaneous goal function is a geometric mean of
all updated replies. To minimize surface roughness and temperature, a multi-response
optimization analysis of process parameters (Table 6) was performed using Design Expert
V11 (StatEase, Minneapolis, MN, USA). Models were used to optimize surface roughness
and temperature. The measure of the solution to fulfill the specified objectives for all
responses are reviewed in MRO.

Table 6. Range of parameters and responses for desirability.

Sl.No Input Parameter Goal Lower Limit Upper Limit

1 Vc In range 75 130
2 Fz In range 0.09 0.45
3 Dc In range 0.2 1
4 Rn In range 0.2 1

5
Surface roughness

observed (µm)
Minimize 0.32 0.49

6
Temperature rise

observed (Tob) Degree
Minimize 24.2 38.8

The objectives of the two optimization approaches, as shown in Table 6 and Figure 4a,b,
include criteria for reducing surface roughness and temperature, respectively. For instanta-
neous optimization, each response must have a low and high value given to each objective.
The optimization is performed by a set of objectives, which have been applied to the vari-
ables and replies. The goal of the replies was to “minimize”. A weight can be used for a
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purpose to affect the shape of its desirability function. The results remain organized in
order of preference, with the most desirable appearing first.

“ ”

  
(a) (b) 

‘ ’

‘
’

8 0.41 0.54 0.20   

Figure 4. Criteria to (a) minimize µm and (b) minimize temp (T◦).

3.4. Desirability Function Analysis

To achieve low surface roughness and temperature, desirability function analysis
optimization was used. The two responses have the same goal, i.e., ‘minimize’ surface
roughness and temperature. The depreciation seeks to get high-quality finished machined
products with lower temperatures for more excellent performance and cost savings. These
investigations targeted surface roughness and temperature characteristics are ‘smaller-is-
better’. The desirability-based approach finds many best solutions, and the option with
the most significant desirability is preferred: the best 63 solutions were acquired in the
optimization.

Table 7 shows that only five higher desirability alternatives were chosen for the
investigation, with 1 having tremendous desirability (D = 0.829). The optimal turning
conditions are a cutting speed of 116.37 m/min, a rate of feed of 0.408 mm/rev, a cutting
depth of 0.538 mm, and a tool nose radius of 0.20 mm. The ideal surface roughness and
temperature are 0.374 µm and 27.439◦. The smaller, the better principle was selected.

Table 7. Best global solution for an optimization.

Number Vc Fz Dc Rn
Surface

Roughness
Temperature Desirability

1 116.37 0.41 0.54 0.20 0.38 27.44 0.829 Selected
2 116.35 0.41 0.54 0.20 0.38 27.43 0.829
3 116.37 0.41 0.54 0.20 0.37 27.43 0.829
4 116.34 0.41 0.53 0.20 0.38 27.43 0.829
5 116.28 0.41 0.54 0.20 0.38 27.43 0.828

The estimated surface over desirability for Vc vs. Fz, Vc vs. Dc and Vc vs. Rn are shown
in Figure 5a–c, while Figure 6a–c shown the contour plots on the desirability, respectively.
The surface plots on the desirability, shown in Figure 5, are two-dimensional representations
of a three-dimensional connection, where variables are given on the x- and y-axes and
a smooth surface defining the dependent variables is shown on the z-axis. The contour
plots on desirability are also shown in Figure 6a–c. A contour plot diagram is employed
to investigate the relationship between the three variables. Two independent variables
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are displayed on the x-axis and y-axis, while one dependent variable is displayed on the
z-axis in these plots. Contour plots aid in the identification of combinations that provide
satisfactory results. These statistics also show that the best response was obtained using a
higher cutting speed, a lower rate of feed, and a low cutting depth.

– –

–

 
(a) (b) 

 
(c) 

Figure 5. Estimated surface plots on desirability (a) Vc vs. Fz, (b) Vc vs. Dc and (c) Vc vs. Rn. Plots

produced using Design-Expert software V11 (StatEase, Minneapolis, MN, USA).
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(a) (b) 

 
(c) 

Figure 6. Contour plot on desirability for (a) Vc vs. Fz, (b) Vc vs. Dc and (c) Vc vs. Rn. Plots produced

using Design-Expert software V11 (StatEase, Minneapolis, MN, USA).

Figure 7 depicts the ramps of the optimized results. The red dots represent the precise
values of the components, while the blue dots represent how well the objectives are satisfied.
It is preferable if the ramp is higher up. The relevant desirability bar graph for the provided
cutting circumstances, replies, and the combined desirability of 0.829 is shown in Figure 8.
The blue bottom bar represents the overall desirability of all the parameters and responses.
However, it is essential to note that the objective of an optimization process is to identify
an appropriate combination of conditions that meet the goals, not to get a D value of 1.
As a result, attractiveness is best accomplished at a low rate of feed and quick speeds
while keeping a consistent low cutting depth. Additionally, the ideal solutions and contour
map give first-hand data for investigators and industrialists to select optimum machining
settings based on design or customer demands. Table 8 shows the optimum values during
the turning of aluminum.
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nge 0.538 

Figure 7. Optimal parameter ramps function graphs and combined optimization.

 

  Optimum

nge 0.538

Figure 8. Desirability bar graph for combined optimization.
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Table 8. Optimum values during turning of aluminum.

Sl.No Input Parameter Goal Optimum Value

1 Vc (m/mm) In range 116.371
2 Fz (mm/rev) In range 0.408
3 Dc (mm) In range 0.538
4 Rn (mm) In range 0.200
5 Surface roughness (µm) Minimize 0.374
6 Temperature rise Observed (Tob) (◦C) Minimize 27.439
7 Overall Desirability 0.829

4. Model Validation

Desirability function analysis is used to estimate the optimal conditions and then
validated by physical measurements. The model’s validity is demonstrated using the error
percentage of less than ±2%. Surface roughness and temperature testing findings indicate
the model is in good agreement with the optimal cutting settings (as predicted by DSA), as
shown in Table 9.

Table 9. Optimized process parameter—validation model.

Sl. No Vc Fz Dc Rn Observations
Confirmatory Test

% Error
Opt. Value by DFA Exper. Value

1 116.37 0.41 0.54 0.20
Surface roughness (µm) 0.374 0.370 01.06

Temperature (◦C) 27.439 27.431 00.02

2 114.57 0.38 0.49 0.200
Surface roughness (µm) 0.379 0.373 01.58

Temperature (◦C) 27.406 27.398 00.03

5. Conclusions

The design of experiment was developed utilizing the central composite design of
the RSM to predict surface roughness and temperature rise. Further, desirability function
analysis optimization was performed to find the optimum value. The following conclusions
have been drawn from this study:

• The cutting speed is the most important influencing parameter compared to the other
parameters.

• The surface roughness is minimum at a cutting speed range of 90 m/min to 105 m/min,
a rate of feed of 0.09 mm/rev and 0.6 mm and a tool nose radius of 1 mm.

• The temperature is low at a 90 105 m/min cutting speed, and it is much lower when
the rate of feed is 0.27 to 0.36 mm/rev. It is observed to be even lower when the nose
radius is between 0.6 and 1 mm.

• The desired function optimization strategy is suggested to obtain the optimal tuning
parameters. The low surface roughness and temperature value are achievable at a
cutting speed of 116.37 m/min, a rate of feed of 0.408 mm/rev, a cutting depth of
0.538 mm, and a tool nose radius of 0.200 mm The related ideal surface roughness and
temperature values are 0.374 µm and 27.439◦, respectively, with a desirability of 0.829
for the value of 1.
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