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Abstract: Because aluminium is a lightweight and low-density material, its alloys, such as Al 6061

alloy, are extensively used in numerous automobile, defense, and aviation components. This study

aims to develop a predictive model to investigate the impact of tool nose radius on the CNC turning

process of Al 6061 alloy and better recognize the implications of operating machining considering

cutting speed, rate of feed, cutting depth, and tool nose radius. The trials were carried out by

using the response surface methodology (RSM), with an Al2O3 coated carbide tool as the cutter

and an Al 6061 workpiece as the material. A mathematical model of the second-order was created.

The analysis of variance (ANOVA) approach was used to analyze the performance characteristics

of the turning operation. Individual desirability values from the desirability function analysis

for the multi-responses are used to construct a composite desirability value. The ideal parameter

levels were determined by using the composite desirability value, and the significant impact of

parameters was assessed by using the analysis of variance. The minimum temperature attained at

the machining parameters are 98.0 m/min cutting speed, 0.26 mm/rev rate of feed, 0.893 mm cutting

depth, and 0.84 mm tool nose radius. The best total desirability value is 23.615 ◦C, indicating that the

experimental results are close to the predicted values.

Keywords: aluminium; cutting speed; response surface methodology; rate of feed; ANOVA; desirability

function; cutting depth; tool nose radius

1. Introduction

Aluminium is perhaps the most abundant element and the most common metal,
contributing to 8% of the earth’s mantle. Due to their excellent mechanical qualities and low
weight, aluminium alloys are increasingly being used as building elements in metal matrix
composite (MMC) materials. The addition of metal reinforcements, such as aluminium
alloys in MMCs makes machining of the composite harder and more difficult to predict the
machining performance [1]. The tremendous degrees of temperature that are generated
while machining increases tool wear, reduces tool life, and causes poor surface finish. As
a result, previous studies have focused on improving the machining process of MMCs,
particularly aluminium alloy-reinforced composites, using both experimental studies [2,3]
and developing different prediction and optimization models [4] by considering factors
such as machining process, type of equipment, the cutting tools, cutting speeds, feed rates,
and lubricants.

Much material research has been directed toward developing innovative industrial
materials of high strength-to-weight proportions, relatively high strengths, high thermal
stiffness, and improved creep, endurance, and fatigue strength. In particular, improved
material performance is required for sophisticated aerospace-sector technology [5]. The ap-
parently abrasive nature of the particles, which function as a cutting edge during machining

Materials 2022, 15, 5892. https://doi.org/10.3390/ma15175892 https://www.mdpi.com/journal/materials

https://doi.org/10.3390/ma15175892
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/materials
https://www.mdpi.com
https://orcid.org/0000-0001-9588-4707
https://doi.org/10.3390/ma15175892
https://www.mdpi.com/journal/materials
https://www.mdpi.com/article/10.3390/ma15175892?type=check_update&version=1


Materials 2022, 15, 5892 2 of 16

of hybrid MMC, is problematic and results in rapid wear of the tool and causes vibration.
In the work reported in [6], experimental examination was done by using LM6 aluminium
alloy material in the turning process to predict surface roughness, vibrations, and tool wear.
The ANOVA and RSM methodology used to analyze the cutting characteristics showed that
the resulting tool interface temperature was 51.75 ◦C. A drilling operation was performed
by using aluminum silicon carbide [7] to measure MRR and surface roughness. The Taguchi
technique is used to create the statistical equation. The ANOVA and MOGA optimization
techniques were used to enhance the cutting performance. The author in [8] used the DFA
analysis to determine the surface quality and cutting parameter force performance index.
RSM and central composite design (CCD) methodology is used in investigations using the
Al 356 alloy reinforced with SiC. The results show that a better surface finish was obtained
at higher cutting speeds. The processing parameters such as rotation speed, rate of feed,
and SiC weight percentage are used to calculate trust force, surface waviness, burr height,
and wear in the tool wear and also conducted a desirability function analysis to optimize
the variables. During the process, the minimum thrust force of 84 N, surface roughness of
1.671 m, and the burr height of 0.16 mm [9].

WEDM experiments use Ti–6Al–4V material to evaluate MRR and energy consumption
using pulse on time, voltage, and wire feed rate. Applying a linear equation of observed
data to reflect the relationship between descriptive and dependent variables yields regres-
sion models. The results show that there is an improvement in composite desirability by
7.88% at the optimum parameter [10]. Response surface methodology is used to reduce
MRR and surface smoothness. The author found that the multiple responses desirability
strategy improved the result [11]. Taguchi’s L27 orthogonal array technique investigates
Al-15%–SiCp metal matrix composite. The DFA analysis was utilized to improve the surface
quality and power usage [12]. The electrical discharge machining method is used. The
Al 6061 alloy is machined by using the machining process. Process parameters include
discharge current, powder percentage, pulses on time, pulse off period, and magnetic field
strength. The experimental design was done by using RSM, and the process variables were
optimized by using DFA. The results of the trials revealed that the discharge current is the
most relevant parameter. The optimum process parameters for minimal overcut (OC) is
0.0801 mm was observed with a desirability index of 0.998 [13].

1.1. Response Surface Methodology

When two or more quantitative factors are present, RSM is used to improve the
response. The dependent variables are replies in the response surface approach, whereas
the independent variables or components are referenced as predictor variables. Turning
AISI 6061 T6 aluminium was subjected to an experimental investigation to maximize
energy usage, waviness, and MRR. The authors designed an experiment using the CCD of
RSM. The optimization results reduce the energy consumption by 14.41%, and the surface
roughness by 360.47% [14]. The experiment was carried out on LM 25 aluminium alloy
utilizing the response surface approach to reduce wear in tool and surface waviness. The
surface roughness is considerably affected by BUE formation at low speeds [15]. Natural
aluminium is evaluated for the turning process by taking speed, cutting depth, and SiCP
weight percent into account. The author employed the ANOVA and RSM approach to
optimize tangential, axial, and radial cutting force. Cutting speed is the most noteworthy
factor inducing the response variables [16]. To investigate the effect of cutting parameter
settings on alumina ceramic material, the turning depth of penetration and surface quality
are measured by using an abrasive water jet machine. Response surface methodology
experiments were used to develop quadratic regression models. The optimal process
conditions would lead to the maximum DOP at 390 µm and a Ra at 5.3 µm. [17]. Knowing
the characteristics of surface and wall thicknesses of AA5052 Al alloys was optimized by
using RSM and ANOVA [18]. A minimum surface roughness is 2.45 µm and maximum
thickness of 0.753 mm, obtained at a spindle speed of 1931 rpm, feed of 654 mm/rev, and
step size of 0.65 mm. A study was carried out to ascertain the effect of nose radius on
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surface waviness while turning aluminium (6061). RSM and ANOVA methodology is
used for optimization. If the increase in cutting speed is within the specified range, it
depreciates the surface finish [19]. A typical lathe machine executes a turning operation
on aluminium 6061 material. The cutting depth, rate of feed, and speed are all considered
while measuring cutting forces, surface waviness, and temperature by using RSM and
ANOVA. The minimum cutting force, surface roughness and temperature are obtained at
7 kgf, 2.4 mm, and 58 ◦C for a depth of cut of 0.5 mm, cutting speed of 900 rpm, and federate
of 0.2 mm [20]. The experiments are done with the help of the DOE. The trials are carried
out on a CNC turning machine made of 7075 Al alloy, with speed, feed, cutting depth, and
tool nose radius considered to reduce power consumption and increase the tool’s life. The
DFA study was carried out by utilizing RSM, and the results were highlighted by a 13.55%
reduced power consumption and a 22.12% improvement in tool life [21].

1.2. Desirability Function Analysis—DFA

The desirability function technique is a popular MRO strategy. The desirability scale
ranges from 0 to 1, showing how near the response is to its ideal value. The numerical
optimization identifies a position where the desirability function was maximized. To
enhance machined settings for turning GFRP pipes with a K20 grade cemented carbide
cutting tool, research known as the DFA methodology was used. To optimize surface
waviness, wear on the tool, and machining power [22]. The researcher in [23] optimized
the tool’s surface quality, MRR, and wear while turning the GFRP composite using DFA.
The Taguchi approach and DFA methodology were used to optimize both the cutting
parameters during the turning of Inconel 718 super alloy material and the ANOVA that
was used to assess the impact of essential factors such as surface waviness and MRR [24].
Experiments are carried out by using the Taguchi approach in conjunction with fuzzy logic
based on the desired function of bovine femur material to optimize temperature, force, and
surface roughness [25].

The predictions of machining operations are crucial and depend on machining vari-
ables such as cutting speed, rate of feed, cutting depth, and tool nose radius. Limited
research is available to optimize temperature by using ANOVA, RSM, and DFA approaches
while machining aluminium 6061 material. This study acknowledges the temperature
prediction and the factors affecting the turning operation. It aims to develop temperature
prediction models while conducting turning operations as a function of several machining
variables because these are critical issues to the industrial experts to reduce unnecessary
heat generated in workpieces and tools.

2. Experimentation Design

The RSM is the most effective tool for analyzing factorial trial outcomes. RSM is a
convenient tool in the engineering sector for problem-solving, analysis, and modeling,
and it also gives appropriate information with lesser experiments [26,27]. The response
temperature (Tob) is represented as a process variable function given as

Temperature Rise = φ(Vc, Fz, Dc, Rn) + eui

where, φ is the response surface, eu is the residual, u is the number of observations in
the factorial experiment, and iu reflects the level of the ith factor in the uth observation.
When the mathematical form of φ is unknown, polynomials expressed in the form of
the processing parameters variable can be utilized to estimate this function within the
experimental region correctly.

The CCD methodology is the most commonly used in response to surface-planned
tests. CCD designs consist of center and star points. The input parameter and their ranges
are described by using the Hindustan Machine Tools data book [28,29]. Table 1 shows all
four variables’ higher (+2) and lower (−2) values. Interpolation was used to compute the
intermediate levels of 0 for all variables. The output response is the workpiece temperature.
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The design matrix utilized to execute the experiments, a four-factor central composite
rotatable design with 30 coded conditions, is shown in Table 2.

Table 1. The levels of process parameters.

Sl. No Parameter Considered
Factorial Levels

−2 −1 0 1 2

1 Cutting speed, Vc (m/min) 75 90 105 120 130
2 Rate of feed, Fz (mm/rev) 0.09 0.18 0.27 0.36 0.45
3 Cutting depth, Dc (mm) 0.2 0.4 0.6 0.8 1.0
4 Tool Nose radius, Rn (mm) 0.2 0.4 0.6 0.8 1.0

Table 2. Responses to experimental values.

Sl.
No

Vc (m/min) Fz (mm/rev) Dc (mm) Rn (mm)
Temperature Rise ◦C

Tob (Observed)
Temperature Rise ◦C (TRSM)

(Pred. by RSM)

1 120 0.36 0.8 0.4 28.8 28.77
2 90 0.18 0.8 0.4 29.8 29.84
3 105 0.27 1.0 0.6 26.6 26.55
4 105 0.27 0.6 0.6 25.8 25.77
5 90 0.36 0.8 0.8 24.9 24.76
6 105 0.27 0.6 0.2 26.8 26.80
7 120 0.36 0.8 0.8 29.7 30.10
8 105 0.27 0.6 0.6 28.2 25.77
9 75 0.27 0.6 0.6 29.3 29.58

10 90 0.18 0.4 0.4 27.1 26.71
11 90 0.36 0.8 0.4 28.6 28.61
12 105 0.27 0.6 0.6 25.6 25.77
13 105 0.27 0.2 0.6 29.6 29.66
14 120 0.18 0.8 0.8 29.8 29.73
15 120 0.18 0.4 0.4 30.1 30.12
16 105 0.27 0.6 0.6 25.6 25.77
17 90 0.36 0.4 0.8 27.8 27.88
18 90 0.36 0.4 0.4 27.2 27.16
19 105 0.27 0.6 1.0 27.1 27.11
20 120 0.18 0.4 0.8 34.2 34.30
21 90 0.18 0.4 0.8 25.8 25.71
22 105 0.45 0.6 0.6 27.6 27.61
23 105 0.09 0.6 0.6 26.8 26.80
24 120 0.36 0.4 0.4 30.4 30.45
25 105 0.27 0.6 0.6 25.8 25.77
26 120 0.18 0.8 0.4 30.1 30.13
27 135 0.27 0.6 0.6 38.8 38.33
28 90 0.18 0.8 0.8 24.2 24.26
29 120 0.36 0.4 0.8 36.5 36.34
30 105 0.27 0.6 0.6 25.6 25.77

2.1. Experimental Set-Up

The trials were carried out on an XLTURN-CNC lathe, and Al 6061 was used as
working material. In this experiment, test samples with a diameter of 40 mm and length of
100 mm were employed, and hardness was tested and was found to be 43 HRC. The tests
were performed in dry circumstances with an Al2O3 coated carbide cutting tool by using a
Sandvik Coromant T-Max P Turning Tool Holder (Sandviken, Sweden). Cutting speed, rate
of feed, cutting depth, and tool nose radius were the machining parameters. A 1-mm hole
was drilled in the workpiece at 10 mm below the machining surface and the temperature
is measured by using a K-type thermocouple (illustrated in Figure 1). Table 1 shows the
input parameters and their levels according to the Hindustan Machine Tools data book,
and Table 2 summarizes the experiment output temperature data.
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Figure 1. Experimental setup.

2.2. Temperature Prediction Using a Response Surface Model

The generalized quadratic polynomial expression for the correlation between the
response surfaces y and the process parameter x is given as

Y = β0 + β1x1 + β2x2 + β3x3 + β11x12 + β22x22 + β12x1 (1)

where β0 is the constant, β1, β2, β3 is the linear term coefficient, β11, β22 is thequadratic
term coefficient, and β12 is the interaction term coefficient.

The observed reading was accurately analyzed by using the Design Expert V11 soft-
ware (Statease, Minneapolis, MN, USA). A second-order quadratic model was developed
for temperature prediction, and the model’s relevance was validated by using an analysis
of variance. The ANOVA analysis used for temperature prediction is shown in Table 3. The
model’s F-value of 786.09 in Table 3 indicates that it is significant. An F-value that is this
high might arise owing to noise just 0.01% of the time.

Model terms with p-values less than 0.0500 are significant. Significant model terms
include Vc, Fz, Dc, Rn, Vc Dc, VcRn, FzDc, FzRn, DcRn, Vc

2, Fz
2, Dc

2, and Rn
2. The presence

of values larger than 0.1000 suggests that the model terms are insignificant. Model reduction
may enhance the model if there are numerous inconsequential model terms (except those
necessary to enable hierarchy).
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Table 3. ANOVA table for temperature rise prediction.

Source
Sum of

Squares Value
df

Mean Square
Value

F-Value p-Value

Model 311.21 14 22.23 786.09 <0.0001 significant
Vc 49.56 1 49.56 1752.53 <0.0001
Fz 1.01 1 1.01 35.72 <0.0001
Dc 9.70 1 9.70 343.14 <0.0001
Rn 0.4290 1 0.4290 15.17 0.0014

Vc Fz 0.0156 1 0.0156 0.5526 0.4688
Vc Dc 9.77 1 9.77 345.35 <0.0001
Vc Rn 26.78 1 26.78 947.06 <0.0001
Fz Dc 2.81 1 2.81 99.22 <0.0001
Fz Rn 2.98 1 2.98 105.23 <0.0001
Dc Rn 20.93 1 20.93 740.18 <0.0001

Vc
2 114.92 1 114.92 4063.88 <0.0001

Fz
2 3.54 1 3.54 125.27 <0.0001

Dc
2 9.37 1 9.37 331.24 <0.0001

Rn
2 2.42 1 2.42 85.49 <0.0001

Residual 0.4242 15 0.0283
Lack of Fit 0.1508 10 0.0151 0.2759 0.9606 Insignificant
Pure Error 0.2733 5 0.0547
Cor Total 311.63 29

The F-value for lack of fit of 0.2759 indicates that the lack of fit is slight compared to
the pure error. A lack of fit F-value that is this big is almost certainly due to noise, and a
non-significant lack of fit is desirable. The regression equation generated by Design Expert
V11 software is shown below.

Temperature = +123.32917 − 1.86083 × Vc − 19.67593 × Fz + 29.35417 × Dc − 43.10417 × Rn − 0.023148
× Vc × Fz − 0.260417 × Vc × Dc + 0.431250 × Vc × Rn − 23.26389 × Fz × Dc + 23.95833 × Fz × Rn

− 28.59375 × Dc × Rn + 0.009097 × Vc
2 + 44.36728 × Fz

2 + 14.60937 × Dc
2 + 7.42187 × Rn

2
(2)

In this work, the input parameters were used to develop mathematical models by
using the DOE and RSM approaches. As shown in Table 3, the estimated F-ratio is greater
than the traditional (tabulated) F-ratio for temperature rise, suggesting that the model
meets the required 95% confidence level. The gap between experimental and anticipated
values is within acceptable bounds.

3. Results and Discussions

3.1. Interaction Effect

This section discusses the interaction impact of the process factors on temperature rise.
Figure 2 depicts the cutting speed’s interaction effect against the rate of feed on temperature.
The above interaction diagram indicates that the cutting speed and rate of feed significantly
impact the turning process’s temperature increase. The graph demonstrates that increasing
the cutting speed [6] induces a temperature increase, as does decreasing the cutting speed,
which is minor for cutting speeds ranging from 91 to 102 m/min. As the cutting speed
increases, the rate at which energy is lost caused by plastic distortion and friction increases,
and tool life will be reduced if cutting speed increases. The tool’s cutting edge will crumble
if the cutting speed is too slow or too quick. Increases in rate of feed, cutting temperature,
and flank wear all directly affect the material’s surface and tend to make it wavier.
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Figure 2. Inter. effect of Vc vs. Fz over temp.

Figure 3 shows how the cutting speed against the cutting depth [6] significantly affects
the turning process’s temperature. The graph indicates that raising the cutting depth of the
incision causes the temperature to rise. The quantity of removed workpiece material rises
with cutting depth and temperature. Less workpiece material clings to the tool’s side at
lesser depths of cut than at more considerable cutting depth. The temperature rises due to
the adhesion of the work material to the tool flank. The ANOVA table confirms the results.

 

Figure 3. Inter. effect of Vc vs. Dc over temp.

Figure 4 depicts the interaction and effect of cutting speed vs. tool nose radius [19] on
temperature rise. The interaction diagram reveals that the tool nose radius significantly
impacts the temperature rise throughout the turning process. According to the graph,
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lowering the tool nose radius minimizes the temperature rise. The ANOVA table further
validates the findings. The tool nose radius primarily influences the cutting temperature;
the more significant the tool nose radius, the greater the distortion and cutting conditions,
and the more heat produced during chip creation. Increasing the tool nose radius, on
the other hand, elongates the working portion of the leading edge and raises the mass of
the tooltip.

 

Figure 4. Inter. effect of Vc vs. Rn over temp.

The graph of observed values vs. expected values is shown in Figure 5, which aids in
detecting observations that the model fails to predict. The 45◦ line should split the data
points evenly [29].

 

Figure 5. Predicted vs. actual.

3.2. Implementation of DFA

In this study, the quality aspects of the turning process were assessed by employing
cutting parameters to optimize temperature throughout the cutting operation. The smaller-
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the-better-type desirability function was used for temperature rise to normalize their
values and assess individual desirability indices in the range of [0, 1] [30]. According to
Harrington [31], Equation (3) establishes the smaller-the-better quality characteristic used
when the response is lowered. ytgt is the response’s lowest value in this situation. Then
we have

yi, i.e., ytgt = ymin.

di =

{

1
0

(

yi −ymax

ytgt − ymax

)r

(3)

where, yi < ytgt; ytgt < yi < ymax , r ≥ 0 and yi < ymax.
As a result, Equation (3) is adjusted as given in Equation (4),

Di =

{

1
0

(

yI −ymax

ymin − ymax

)r

(4)

where, yi < ymin; ymin < yi < ymax , r ≥ 0 and yi < ymax.
The most desired circumstance in this research is when yi is smaller than ymin, and

the individual desirability index becomes 1. When yi deviates from ymin, the value of di
falls and equals 0 when yi exceeds ymax. The di values produced are in the [0, 1] in all other
cases. Depending on their respective relevance, the weights allocated to each reply are
represented by the exponent’s r. Equation (5) can be used to compute the geometric mean
of the individual desire as the composite desirability for each experimental circumstance.
Then we have

Composite Desirability (CD) = (dw1
1 × dw2

2 × dw3
3 x . . . . . . . . . )

1/k (5)

where, k is the number of responses, d1, d2, d3 are the individual desirability indices, w1,
w2, w3 are the weight-assigned responses, and w = ∑

k
i wi = 1.

If any of the replies is entirely unacceptable, the value of CD becomes 0, i.e., di = 0.
Individual desirability of temperature rise is calculated by using the desirability functions
given in Equation (6). Temperature increase is given equal weightage (w1 = w2 = 1). Then
we have

dtemp =

{

1
0

(

yi − 38.8

24.2 − 38.8

)1

(6)

where, yi < 24.2; 24.2 < yi < 38.8, r ≥ 0 and yi < 38.8.
Equation (7) was used to calculate the temperature rise based on the answers

under examination:

CD =
(

d1
temp

)1/2

i = 1 to 30 (7)

The best parameter circumstances have the highest overall desirability (TD) factor
settings. The concurrent objective function is the geometric mean of all changing responses.
Design Expert software analyzes the combination based on the composite desirability
optimization approach. Models have been created to optimize temperature increases. A
measure of how the solution has achieved the needed objectives for all the answers must
be assessed in the multi-response optimization (MRO). To limit temperature rise, the best
approach is to check the process input parameters. Tables 4 and 5 show the optimum
parameter combination values and the projected replies’ projected values.
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Table 4. Selection of factors and responses for desirability.

Sl. No Input Parameter Goal Lower Limit Upper Limit

1 Vc In range 75 130
2 Fz In range 0.09 0.45
3 Dc In range 0.2 1.0
4 Rn In range 0.2 1.0
5 Temperature rise Observed (Tob) Minimize 24.2 38.8

Table 5. Optimum values during turning of aluminium.

Sl. No Input Parameter Goal Optimum Value

1 Vc In range 98.0 (m/min)
2 Fz In range 0.26 (mm/rev)
3 Dc In range 0.893 (mm)
4 Rn In range 0.84 (mm)
5 Temperature rise Observed (Tob) Minimize 23.615 ◦C

Figures 6–8 illustrate the desirability contour plot that show the relation between
the cutting speed and the rate of feed over temperature variable. This plot in Figure 6
shows values of Z variables to X and Y variables. The link between the three variables
was investigated by using these contour plot diagrams. The x- and y-axes show two in-
dependent variables, whereas the z-axis shows one dependent variable. Contour plots
aid in the identification of combinations that provide favorable result values. Similarly,
Figures 7 and 8 depict the relationship of the cutting speed with the cutting depth and nose
radius over temperature, respectively.

 

Figure 6. Contour plot on desirability (Vc vs. Fz).



Materials 2022, 15, 5892 11 of 16

 

Figure 7. Contour plot on desirability (Vc vs. Dc).

 

Figure 8. Contour plot on desirability (Vc vs. Rn).

The surface plot on desirability is shown in Figures 9–12. The plot in Figure 9 shows
the surface plot between cutting speed and feed rate over desirability value, which is
close to 1. The surface plots are three-dimensional data visualizations. A surface plot is a
two-dimensional representation of a three-dimensional connection, with variables on the x-
and y-axes and a smooth texture representing the dependent variables on the z-axis. As
given in the plots of Figures 9–11, the desirability value of cutting speed with feed rate,
depth of cut and nose radius are close to 1 as per DFA methodology.
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Figure 9. Surface plot on desirability (Vc vs. Fz).

 

Figure 10. Surface plot on desirability (V  vs. D ). 
Figure 10. Surface plot on desirability (Vc vs. Dc).

Design Expert V11 software was used for optimization, and 100 solutions were ob-
tained during optimization. The optimal combination for getting the desired reactions
was a set of situations with the highest desirability value. The best combinations with
higher desirability functions are shown in Table 5. Figures 13 and 14 depict the ramp
functions and bar graphs illustrating the desirability of output responses, respectively.
The dot at the top of each ramp reflect the factor setting (or) response forecast for that
response characteristic. The size of the dot reflects how much it is wanted. For instance,
the red colour dots show the optimized machining parameters, i.e., 97.9996 m/min cutting
speed, 0.257521 mm/rev rate of feed, 0.892692 mm cutting depth and 0.840019 mm tool
nose radius are the optimized values. The blue colour dots show the optimized predicted
temperature, which is 23.615 ◦C. When the weight for each parameter was set to one, a
linear ramp function is generated between the lower and required values (or the higher
and required values). The bar graph depicts the overall desirability of the responses. The
optimal zone has an overall desirability value of 23.615 ◦C, suggesting it is close to the
target response.
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Figure 11. Surface plot on desirability (Vc vs. Rn).

 

Figure 12. Contour plot of the variable on temperature.



Materials 2022, 15, 5892 14 of 16

 

Figure 13. Ramp function graph of desirability.

 

Figure 14. Bar graph of desirability.

4. Validation of the Model

The desirability function analysis predicted the optimal conditions, which was vali-
dated by physical measurements. The model’s validity is demonstrated because the error
percentage is less than ±2%. Surface roughness and temperature testing findings indicate
good agreement with the optimal cutting settings (as predicted by DSA) as shown in
Table 6.
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Table 6. Optimized process parameter—validation model.

Sl. No Vc Fz Dc Rn

Confirmatory Test
(Temp., ◦C) %

ErrorOptimum Value
by DFA

Exp. Value

1 98.0 0.258 0.893 0.84 23.615 23.610 0.021
2 90.3 0.136 0.654 0.86 23.943 23.896 0.196
3 94.7 0.199 0.730 0.78 24.098 24.061 0.154

5. Conclusions

Due to the critical machining properties, the experimentation to predict temperature
rise was done using Al 6061 workpiece material and Al2O3 carbide coated cutting tool.
The input parameters considered were cutting speed, rate of feed, cutting depth, and tool
nose radius. The experiments were designed by using design of experiment (DoE)-based
response surface methodology and the desirability function approach. The mathematical
model was developed to verify for its adequacy by using analysis of variance (ANOVA).
The ANOVA table showed that the model value is less than 0.0001, implying that the model
is significant, and the F-value for lack of fit is 0.2759, indicating that it is not significant due
to noise.

The interaction effect diagram of RSM methodology revealed that cutting speed is the
most significant factor, followed by rate of feed, cutting depth, and tool nose radius. This
shows that the cutting speed is the stimulating factor of temperature rise throughout the
turning process and the temperature rise is minimal between 91 m/min and 98 m/min
of cutting speed, 0.6 mm and 0.8 mm of nose radius. Therefore, increasing cutting speed
dramatically increases the temperatures of the workpiece. Furthermore, multi-response
optimization by desirability analysis shows that the minimum value of temperature rise
parameters are 98.0 m/min cutting speed, 0.258 mm rate of feed, 0.893 mm cutting depth,
and 0.84 mm tool nose radius. The optimal zone has an overall desirability rating of
23.615 ◦C, indicating that it is close to the desired response. The models are validated,
and the error percentage is less than ±2%. Temperature rise outcomes indicate that the
experiments have good agreement with the optimal cutting settings.
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